Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

نویسندگان

  • Masato WAKAYAMA
  • Masato Wakayama
چکیده

The initial aim of the present paper is to provide a complete description for the eigenvalue problem of the non-commutative harmonic oscillator (NcHO), which is given by a two-by-two system of paritypreserving ordinary differential operator [19], in terms of Heun’s ordinary differential equations, the second order Fuchsian differential equations with four regular singularities in a complex domain. This description has been achieved for odd eigenfunctions in Ochiai [16] nicely but missing for even eigenfunctions up to now. As a by-product of this study, using the monodromy representation of Heun’s equation, we prove that the multiplicity of the eigenvalue of the NcHO is at most two. Moreover, we give a condition for the existence of a finite-type eigenfunction (essentially, given by a finite sum of Hermite functions) of the eigenvalue problem and an explicit example of such eigenvalues, from which one finds that doubly degenerate eigenstates of the NcHO actually exist even in the same parity. In the final section, as the second main purpose of this paper, we discuss a connection between the quantum Rabi model [2, 13, 28] and the operator naturally arising from the NcHO through the oscillator representation of the Lie algebra sl2, by the general confluence procedure for Heun’s equation and Langlands’ quotient realization of a different representation of sl2. 2010 Mathematics Subject Classification: Primary 34L40, Secondary 81Q10, 34M05, 81S05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

A Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force

This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013